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1. Optimal linear codes problem

Fq: the field of q elements

Fnq = {(a1, · · · , an) | ai ∈ Fq}
The weight of a = (a1, · · · , an) ∈ Fnq is

wt(a) = |{i | ai ̸= 0}|



An [n, k, d]q code C means a k-dimensional

subspace of Fnq with minimum weight d,

d = min{wt(a) | a ∈ C, a ̸= 0}.
A vector a ∈ C is called a codeword.

For an [n, k, d]q code C, a k×n matrix G whose

rows form a basis of C is a generator matrix.



The weight distribution (w.d.) of C is the list

of numbers Ai > 0, where

Ai = |{c ∈ C | wt(c) = i}| > 0.

The weight distribution

(A0, Ad, ...) = (1, α, ...)

is also expressed as

01dα · · · .



A good [n, k, d]q code will have

small n for fast transmission of messages,

large k to enable transmission of a wide

variety of messages, and

large d to correct many errors.

The problem to optimize one of the param-

eters n, k, d for given the other two is called

”optimal linear codes problem” (Hill 1992).



Problem 1. Find nq(k, d), the smallest value

of n for which an [n, k, d]q code exists.

Problem 2. Find dq(n, k), the largest value

of d for which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if

n = nq(k, d) or d = dq(n, k).

We deal with Problem 1 for q = 9, k = 4.



The Griesmer bound

n ≥ gq(k, d) :=
k−1∑
i=0


d

qi



where ⌈x⌉ is a smallest integer ≥ x.

An [n, k, d]q code attaining the Griesmer bound

is called a Griesmer code.

Griesmer codes are optimal.



Known results for q = 9, k = 4

The exact values of n9(4, d) are determined

for all d for d ≥ 1216.

For 1 ≤ d ≤ 1215, n9(4, d) is detemined for

276 values of d but not for 939 values of d.



2. The geometric method

PG(r, q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r, q)

0-flat: point 1-flat: line

2-flat: plane (r−1)-flat: hyperplane

θj := (qj+1−1)/(q−1) = qj+qj−1+· · ·+q+1



C : an [n, k, d]q code generated by G.

Since we would like to find nq(k, d),

we assume that G contains no all-zero-columns.

Then the columns of G can be considered

as a multiset of n points in Σ = PG(k− 1, q)

denoted also by C.

Fj := the set of j-flats of Σ



i-point: a point of Σ with multiplicity i in C.
γ0: the maximum multiplicity of a point from

Σ in C
Ci: the set of i-points in Σ, 0 ≤ i ≤ γ0.

λi:= |Ci|, 0 ≤ i ≤ γ0.

For ∀S ⊂ Σ, the multiplicity of S w.r.t. C,
denoted by mC(S), is defined by

mC(S) =
γ0∑
i=1

i·|S∩Ci|.



Then we obtain the partition

Σ = C0 ∪ C1 ∪ · · · ∪ Cγ0 such that

n = mC(Σ),

n− d = max{mC(π) | π ∈ Fk−2}.

Conversely such a partition of Σ as above

gives an [n, k, d]q code in the natural manner.



i-hyperplane: a hyperplane π with i = mC(π).

ai := |{π ∈ Fk−2 | mC(π) = i}|.

The list of ai’s is the spectrum of C.
ai = An−i/(q − 1) for 0 ≤ i ≤ n− d.



3. Projective dual

An [n, k, d]q code is m-divisible (or m-div) if

∃m > 1 s.t. Ai > 0 ⇒ m|i.

Ex. 1. There exists a 3-div [41,4,33]9 code

with w.d. 0133984363608391968.

The spectrum is (a2, a5, a8) = (246,451,123).



Lemma 1. (Projective dual)

C: m-div [n, k, d]q code, q = ph, p prime.

m = pr for some 1 ≤ r < h(k − 2), λ0 > 0.

⇒ ∃C∗: t-div [n∗, k, d∗]q code with

t = qk−2/m,

n∗ = ntq − d
mθk−1,

d∗ = ((n− d)q − n)t.



A generator matrix for C∗ is given by consid-

ering (n− d− jm)-hyperplanes as j-points in

the dual space Σ∗ of Σ for 0 ≤ j ≤ w − 1.

Ex. 2.

C: 3-div [41,4,33]9

with spec. (a2, a5, a8) = (246,451,123)

↓ projective dual

C∗: 27-div [943,4,837]9 (n∗ = 2a2 + a5)

with spec. (a∗79, a
∗
106) = (41,779)



4. Geometric puncturing

The puncturing from a given [n, k, d]q code

by deleting the coordinates corresponding to

some geometric object in Σ = PG(k−1, q) is

geometric puncturing.

Lemma 2. C: [n, k, d]q code

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci contains a t-flat Π and if d > qt

⇒ ∃C′: [n− θt, k, d
′]q code, for d′ ≥ d− qt.



5. Quasi-cyclic codes

R = Fq[x]/(xN − 1): ring of polynomials

over Fq modulo xN − 1.

We associate (a0, a1, ..., aN−1) ∈ FNq
with a0 + a1x+ · · ·+ aN−1x

N−1 ∈ R.



For g = (g1(x), · · · , gm(x)) ∈ Rm, an ideal Cg

of Rm defined by

Cg = {(r(x)g1(x), · · · , r(x)gm(x)) | r(x) ∈ R}

is called the 1-generator quasi-cyclic (QC)

code with generator g.



When m = 1, C = Cg is called cyclic satisfy-

ing that c(x) ∈ C implies x · c(x) ∈ C,
i.e., (c0, c1, ..., cN−1) ∈ C
⇒ (cN−1, c0, c1, ..., cN−2) ∈ C.



Let g(x) = xk−
k−1∑
i=0

gix
i ∈ Fq[x] dividing xN−1.

We denote by [gN ] or by [g0g1 · · · gNk−1] the
k ×N matrix

[P, TP, T2P, ..., TN−1P ],
where

T =



0 0 . . . . . . 0 g0
1 0 . . . . . . 0 g1
0 1 0 . . . 0 g2
0 0 .. . 0 ... ...
0 . . . 0 .. . 0 gk−2
0 . . . . . . 0 1 gk−1


, P =



1
0
0
...
0
0


i.e., T is the companion matrix of g(x).



τ : PG(k − 1, q) −→ PG(k − 1, q)

defined by

τ(P(x0, · · · , xk−1)) = P(T (x0, · · · , xk−1)
T).

Then the columns of [gN ] can be considered

as an orbit of τ .

Now, take m orbits O1,O2, · · · ,Om of τ with

length N , and select a point Pi from each Oi.

We take P1, P2, · · · , Pm as non-zero column

vectors in Fkq .



We always take P1 as P = (1,0,0, · · · ,0)T.

We denote the matrix

[P1, TP1, T
2P1, ..., T

n1−1P1;P2, TP2, · · ·
· · · ;Pm, TPm, T2Pm, ..., Tnm−1Pm]

by [gn1] + P
n2
2 + · · ·+ Pnm

m .

Then, the matrix [gN ]+PN
2 +· · ·+PN

m defined

from m orbits O1,O2, · · · ,Om of τ generates

a QC code.



F9 = {0,1, α, · · ·, α7} ,with α2 = α+1.

we denote α, α2, · · ·, α7 by 2,3, · · ·,8 so that

F9 = {0,1,2, · · ·,8}.
addition table multiplication table
+ 0 1 2 3 4 5 6 7 8 × 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0
1 1 5 3 8 7 0 4 6 2 1 0 1 2 3 4 5 6 7 8
2 2 3 6 4 1 8 0 5 7 2 0 2 3 4 5 6 7 8 1
3 3 8 4 7 5 2 1 0 6 3 0 3 4 5 6 7 8 1 2
4 4 7 1 5 8 6 3 2 0 4 0 4 5 6 7 8 1 2 3
5 5 0 8 2 6 1 7 4 3 5 0 5 6 7 8 1 2 3 4
6 6 4 0 1 3 7 2 8 5 6 0 6 7 8 1 2 3 4 5
7 7 6 5 0 2 4 8 3 1 7 0 7 8 1 2 3 4 5 6
8 8 2 7 6 0 3 5 1 4 8 0 8 1 2 3 4 5 6 7



Ex. 3.

P1 = (1,0,0,0)T , P2 = (1,0,1,7)T ∈ F49

g(x) = x4 − 5x3 − 5x2 − 5x− 5 ∈ F9[x]

⇒ T =



0 0 0 5
1 0 0 5
0 1 0 5
0 0 1 5





P1 = (1,0,0,0)T , TP1 = (0,1,0,0)T ,

T2P1 = (0,0,1,0)T , T3P1 = (0,0,0,1)T,

T4P1 = (5,5,5,5)T , T5P1 = (1,0,0,0)T

O1 = {P1, TP1, T
2P1, T

3P1, T
4P1}

⇒ [1 2 3 45] =



1 0 0 0 5
0 1 0 0 5
0 0 1 0 5
0 0 0 1 5


⇒ [5,4,2]9 code



P2 = (1,0,1,7)T , TP2 = (3,8,3,8)T ,

T2P2 = (4,5,0,5)T , T3P2 = (1,7,0,1)T,

T4P2 = (5,0,4,5)T , T5P2 = (1,0,1,7)T

O2 = {P2, TP2, T
2P2, T

3P2, T
4P2}

⇒ 1 0 1 75 =



1 3 4 1 5
0 8 5 7 0
1 3 0 0 4
7 8 5 1 5


⇒ [5,4,2]9 code



[1 2 3 45] =



1 0 0 0 5
0 1 0 0 5
0 0 1 0 5
0 0 0 1 5


, 1 0 1 75 =



1 3 4 1 5
0 8 5 7 0
1 3 0 0 4
7 8 5 1 5



⇒ [1 2 3 45]+1 0 1 75 =



1 0 0 0 1 1 3 4 1 5
0 1 0 0 2 0 8 5 7 0
0 0 1 0 3 1 3 0 0 4
0 0 0 1 4 7 8 5 1 5


⇒ QC [10,4,5]9 code



6. Construction of new codes

Lemma 3. There exists [1227,4,1089]9,

[1237,4,1098]9, [1247,4,1107]9 codes.

Proof.

C: QC code with generator matrix

[52147] + 14027 +13717 +17067 +12437 +13777

+17187.

Then C is a 3-div [49,4,39]9 code with spec-

trum (a1, a4, a7, a10) = (28,448,267,77).



As projective dual, we get a [1247,4,1107]9

code C∗ with w.d. 01110761681134392.

The multiset for C∗ has two skew lines

l1 = ⟨1000,1111⟩, l2 = ⟨1002,1121⟩.

Hence, we get

[1227,4,1089]9, [1237,4,1098]9 codes by

geometric puncturing. □



Lemma 4. There exist

[913,4,810]9, [923,4,819]9, [933,4,828]9

and [943,4,837]9 codes.

Proof.

C: extended QC code with generator matrix

[10004] + 72114 +11164 +15744 +13764 +15074

+12474 +14264 +12374 +18604 +15151.

⇒ C: 3-div [41,4,33]9 code with spectrum

(a2, a5, a8) = (246,451,123).



C: 3-div [41,4,33]9

↓ projective dual

C∗: 27-div [943,4,837]9

The multiset for C∗ contains three skew lines

l1 = ⟨1000,1018⟩, l2 = ⟨1002,1102⟩, l3 = ⟨1003,1114⟩.

Hence, we get

[913,4,810]9, [923,4,819]9 and [933,4,828]9

codes by geometric puncturing. □



There are 200 orbits of length 4,

8 orbits of length 2 and 4 fixed points

under the projectivity defined by the compan-

ion matrix of x4 − 1.

We give three other 3-divisible codes con-

structed from these orbits.



Lemma 5. There exist

[1034− 10t,4,918− 9t]9 codes

for t = 0,1,2,3,4,5,6,7,8.

Proof.

C: [38,4,30]9 code with generator matrix

G = [10004] + 17214 +12154 +10564 +15744

+15424+17614+10654+11684+15151+13571,



where the columns of G consist of

nine orbits of length 4 and two fixed points

under the projectivity defined by the compan-

ion matrix of x4 − 1.

⇒ C: 3-div [38,4,30]9 code with spectrum

(a2, a5, a8) = (298,438,84).



C: 3-div [38,4,30]9

↓ projective dual

C∗: 27-div [1034,4,918]9

The multiset for C∗ contains eight skew lines

⟨1000,1103⟩, ⟨1002,1111⟩, ⟨1003,1017⟩, ⟨1005,1121⟩,

⟨1006,1132⟩, ⟨1007,1140⟩, ⟨1008,1150⟩, ⟨1010,1105⟩.

Hence, we get

[1034− 10t,4,918− 9t]9 codes for 1 ≤ t ≤ 8

by geometric puncturing. □



Lemma 6. There exist

[1125− 10t,4,999− 9t]9 codes

for t = 0,1,2,3,4,5,6,7,8.

Proof.

C: [35,4,27]9 code with generator matrix

G = 10184+10774+12204+15504+10344+15664

+13564+13132+16522+13571+11111+17531,



where the columns of G consist of

seven orbits of length 4,

two orbits of length 2 and three fixed points

under the projectivity defined by the compan-

ion matrix of x4 − 1.

⇒ C: 3-div [35,4,27]9 code with spectrum

(a2, a5, a8) = (360,405,55).



C: 3-div [35,4,27]9

↓ projective dual

C∗: 27-div [1125,4,999]9

The multiset for C∗ contains eight skew lines

⟨1000,1001⟩, ⟨1011,1100⟩, ⟨1012,1114⟩, ⟨1013,1120⟩,

⟨1014,1130⟩, ⟨1015,1140⟩, ⟨1016,1150⟩, ⟨1017,1161⟩.

Hence, we get

[1125− 10t,4,999− 9t]9 codes for 1 ≤ t ≤ 8

by geometric puncturing. □



Lemma 7. There exist

[1186−10t,4,1053−9t]9 for t = 0,1,2,3,4,5

and [1277,4,1134]9 codes.

Proof.

C: [39,4,30]9 code with generator matrix

G = [10004] + 17214 +18464 +14734 +13004 +

18514 +15744 +12814 +14054 +12562 +15151,



where the columns of G consist of

nine orbits of length 4,

one orbit of length 2 and one fixed point

under the projectivity defined by the compan-

ion matrix of x4 − 1.

⇒ C: 3-div [39,4,30]9 code with spectrum

(a0, a3, a6, a9) = (32,427,327,34).



C: 3-div [39,4,30]9
↓ projective dual

C∗: 27-div [1277,4,1134]9
The multiset for C∗ contains one plane

⟨1004,1018,1118⟩

and five skew lines

⟨1000,1015⟩, ⟨1002,1103⟩, ⟨1003,1110⟩, ⟨1005,1120⟩,

⟨1006,1140⟩.

Hence, we get

[1186−10t,4,1053−9t]9 codes for 0 ≤ t ≤ 5

by geometric puncturing. □



7. New results on n9(4, d)

We determined n9(4, d) for 115 values of d.

(1) n9(4, d) = g9(4, d) for d ∈ {811-837,892-918,973-

999}

(2) n9(4, d) = g9(4, d) + 1 for d ∈ {964-972,1045-

1053,1114-1116,1122-1134}

(3) n9(4, d) ≤ g9(4, d)+1 for d ∈ {802-810,838-891,919-

963,1000-1044,1081-1113,1117-1121}

Still n9(4, d) is not determined for 824 values

of d.



Thank you for your attention!
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