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1. Optimal linear codes problem

Fq: the field of g elements
Fg:{(a17°'° ,CLn) a’ieFQ}
The weight of a = (a1, -+ ,an) € F} is

wt(a) = [{i | a; 7 O}




An [n,k,d]; code C means a k-dimensional
subspace of IF;’; with minimum weight d,

d = min{wt(a) | a € C,a # 0}.
A vector a € C is called a codeword.

For an [n, k,d]q, code C, a kxn matrix G whose

rows form a basis of C is a generator matrix.



The weight distribution (w.d.) of C is the list
of numbers A; > 0, where

Aj = [{ce C | wt(e) =i} > 0.

The weight distribution

(Ao, Ag,...) = (1,0, ...)
IS alsO expressed as
Olgqx....



A good [n,k,d]; code will have

small n for fast transmission of messages,

large £k to enable transmission of a wide
variety of messages, and

large d to correct many errors.

The problem to optimize one of the param-
eters n, k, d for given the other two is called

"optimal linear codes problem” (Hill 1992).



Problem 1. Find ny(k,d), the smallest value
of n for which an [n,k,d]; code exists.

Problem 2. Find dq4(n,k), the largest value
of d for which an [n,k,d]; code exists.

An [n, k,d], code is called optimal if
n = ng(k,d) or d =dy(n,k).

We deal with Problem 1 for ¢ =9, k£ = 4.



The Griesmer bound

k=11 g
n > gq(k,d) = > |—

i=0 | q°

where [z| is a smallest integer > x.

An [n, k,d]; code attaining the Griesmer bound
IS called a Griesmer code.

Griesmer codes are optimal.



Known results for ¢ =9, k=4

The exact values of ng(4,d) are determined
for all d for d > 1216.

For 1 < d < 1215, ng(4,d) is detemined for
276 values of d but not for 939 values of d.



2. The geometric method

PG(r,q): projective space of dim. r over Fy
j-flat: j-dim. projective subspace of PG(r, q)
O-flat: point 1-flat: line
2-flat: plane (r—1)-flat: hyperplane

;= (@1 -1)/(g—1) = ¢F+a 4+ +a+1




C : an [n, k,d]q, code generated by G.

Since we would like to find ng(k, d),
we assume that G contains no all-zero-columns.
Then the columns of G can be considered
as a multiset of n points in X = PG(k—-1,q)
denoted also by C.

J; i= the set of j-flats of X



1-point: a point of > with multiplicity < in C.
vo: the maximum multiplicity of a point from
> inC

C;. the set of -points in >, 0 <1 < ~p.

Aii= 1G], 0 <4 < qp.

For VS C X, the multiplicity of S w.r.t. C,
denoted by m¢(S), is defined by

0
mc(S) = ,ZliWSﬂCz\-
1=



Then we obtain the partition
> = (CgUC1U---UC,, such that

n

n —d

me(X),
maX{mc(ﬂ') | T € fk—Q}-

Conversely such a partition of > as above

gives an [n, k,d]; code in the natural manner.



i-hyperplane: a hyperplane «w with ¢ = mg().
a; = {m € Frp_o | me(m) = i},

The list of a;'s is the spectrum of C.
a; = A,_;/(g—1) for 0 <i<n—d.



3. Projective dual

An [n,k,d], code is m-divisible (or m-div) if

dm > 1 S.T. A; >0 = m|z

Ex. 1. There exists a 3-div [41,4,33]g code
with w.d. 0133984363008391968
The spectrum is (as, as,ag) = (246,451, 123).



Lemma 1. (Projective dual)
C: m-div [n, k,d]; code, ¢ = p", p prime.
m = p" for some 1 <r < h(k —2), A\g > 0.
= JC*: t-div [n*, k,d*], code with

t — qk—Q/m’

w* = ntq— 46, 1,

d* = ((n—-d)g —n)t.



A generator matrix for C* is given by consid-
ering (n —d — jm)-hyperplanes as j-points in
the dual space >* of > for 0 < j <w — 1.

EX. 2.
C: 3-div [41,4,33]g
with spec. (as,as,ag) = (246,451,123)
J projective dual
C*. 27-div [943,4,837]g9 (n* = 2ao 4+ as)
with spec. (a%g,aipg) = (41,779)



4. Geometric puncturing

The puncturing from a given [n,k,d]; code
by deleting the coordinates corresponding to
some geometric object in X =PG(k—-1,q) is

geometric puncturing.

Lemma 2. C: [n,k,d]; code

U2 4C;: the partition of X obtained from C.
If U;>1C; contains a ¢-flat 1 and if d > q'

= 3C": [n — 04 k,d']4 code, for d' > d — ¢'.



5. Quasi-cyclic codes

R = Fy[x]/(z"N — 1): ring of polynomials
over F, modulo =V — 1.

We associate (ag,a1,...,an_1) € FY
with ag +a1z+ - +any_12V "1 € R.



For g = (g1(xz), -+ ,gm(x)) € R™, an ideal Cg
of R™ defined by

Cg ={(r(x)g1(x), -~ ,r(x)gm(z)) | r(z) € R}

is called the 1-generator quasi-cyclic (QQC)

code with generator g.



When m = 1, C = (g is called cyclic satisfy-
ing that c¢(x) € C implies x - ¢(x) € C,

i.e., (co,c1,...,cny_1) €C

= (eny—1,¢0,€1,---,cN_2) €C.



k—1 .
Let g(z) = zF— Y g;zt € Fy[x] dividing 2N —1.
1=0

We denote by [¢'] or by [gog1---gi 1] the
k X N matrix
([P, TP, T?P,.... TN-1p],

where
0 0 ... ... 0| go 1
1 0 ... ... O g1 0
/0 1 O ... 0| g7 10
= O 0 --. 0O : : P = :
O ... O .. 0 gl.—_o2 0
_O ...... O 1 gk_l_ _O_

i.e., T is the companion matrix of g(x).



7. PG(k—-1,q9) — PG(k—-1,q)
defined by

T(P(CIZ‘O, T ,Zl?k_]_)) — P(T(QZ‘O, C 7xk—1)T)-
Then the columns of [¢?V] can be considered

as an orbit of 7.

Now, take m orbits O1,05,---, Oy of 7 Wwith
length N, and select a point P, from each O;.
We take Py, P5,---, Py as non-zero column

vectors in IF’;.



We always take P; as P = (1,0,0,---,0)".
We denote the matrix
[Py, TPy, T?Py,.... T~ 1P : P, TP5, -

coo Py TP, T2 Py, ..., T~ 1 P
by [¢"] + P32 +--- + Pl
Then, the matrix [¢V]+ P +---+ PN defined
from m orbits O1,0»5,--- ,0Ony Of 7 generates

a QC code.



Lo’} with a2 =a+ 1.

{07 17 a, -
we denote a, a?, - -

Fg =

-, 8 so that

-,a7 by 2,3, -

., 8},

{07 17 27 ©
addition table

Fg =

multiplication table
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Ex. 3.
Py =(1,0,0,0)"T , P, =1(1,0,1,7)" ¢ F3

g(z) = 2% — 523 — 522 — 52 — 5 € Fg|z]

O ~r OO
= O O O
O O1 01 O

o O = O



P, =(1,0,0,0)T |, TP =1(0,1,0,0)7 ,
T2P; = (0,0,1,0)T , T3P = (0,0,0,1)7,
74P, = (5,5,5,5)7 , T5P; = (1,0,0,0)T

01 ={Py, TP, T?P;, T3P, T*P}

= [1234°] =

O ~Rr O O
= O O O
o1 O1 O Ol

o o o+
O O~ O

= [5,4,2]9 code



P, =(1,0,1,7)T , TP,=(3,8,3,8)T,
T2P, = (4,5,0,5)7 , T3P, =(1,7,0,1)7,
T4P2 — (5, 0,4,5)T , T5P2 — (17 07 177)T

Oy = {Pp, TP, T?P, T3P, T* P>}

13415
08570

1017°=
= 1300 4
78515

= [5,4,2]9 code
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= [1234°]41017°

= QC [10,4,5]g code



6. Construction of new codes

Lemma 3. There exists [1227,4,1089]9,
[1237,4,1098]g, [1247,4,1107]9 codes.

Proof.

C: QC code with generator matrix

[52147] 4+ 14027 4+ 13717 4+ 17067 + 12437 + 1377"
+1718".

Then C is a 3-div [49, 4,39]g9 code with spec-
trum (a1,a4,a7,a10) = (28,448,267,77).




As projective dual, we get a [1247,4,1107]9
code C* with w.d. 011107°16811343°2
The multiset for C* has two skew lines
11 = (1000,1111), I, = (1002,1121).
Hence, we get
1227,4,1089]9, [1237,4,1098]g codes by

geometric puncturing.




Lemma 4. There exist
[913,4,810]9, [923,4,819]q, [933,4,828]qg
and [943,4,837]g9 codes.

Proof.

C: extended QC code with generator matrix
[1000%] + 72114 + 1116% + 15744 + 1376% + 15074
+1247% + 1426% + 12374 + 1860% + 15151,

= C: 3-div [41,4,33]g code with spectrum
(an,as5,ag) = (246,451,123).



C: 3-div [41,4,33]¢
J projective dual
C*. 27-div [943,4,837]9
T he multiset for C* contains three skew lines
1 = (1000,1018), I = (1002,1102),I3 = (1003,1114).
Hence, we get
[913,4,810]9, [923,4,819]g and [933,4,828]qg

codes by geometric puncturing.




There are 200 orbits of length 4,
8 orbits of length 2 and 4 fixed points

under the projectivity defined by the compan-
ion matrix of 2% — 1.

We give three other 3-divisible codes con-

structed from these orbits.



Lemma 5. There exist
[1034 — 10¢,4,918 — 9t]g codes
fort =0,1,2,3,4,5,6,7.8.

Proof.

C: [38,4,30]g code with generator matrix
G = [1000%4] + 1721% + 1215% 4+ 10564 + 15744
+15424 4176144106544+ 1168%+ 15151 + 13571,



where the columns of G consist of

nine orbits of length 4 and two fixed points

under the projectivity defined by the compan-
ion matrix of 24 — 1.

= (C: 3-div [38,4,30]g code with spectrum
(an,as5,ag) = (298,438,84).



C: 3-div [38,4,30]q

J projective dual

C*. 27-div [1034,4,918]q
The multiset for C* contains eight skew lines
(1000, 1103), (1002,1111), (1003,1017), (1005,1121),
(1006, 1132), (1007,1140), (1008,1150), (1010, 1105).
Hence, we get
1034 — 10¢,4,918 — 9t]g codes for 1 <t < 8

DYy geometric puncturing.




Lemma 6. There exist
[1125 — 10t, 4,999 — 9t|g codes
fort =0,1,2,3,4,5,6,7.8.

Proof.

C: [35,4,27]g code with generator matrix
G = 1018441077%41220%4+1550%+1034%+ 15664
+1356%+131324 16522413571 411111 + 17531,



where the columns of G consist of
seven orbits of length 4,
two orbits of length 2 and three fixed points

under the projectivity defined by the compan-
ion matrix of z% — 1.

= C: 3-div [35,4,27]9 code with spectrum
(an,as,ag) = (360,405,55).



C: 3-div [35,4,27]¢

J projective dual

C*:. 27-div [1125,4,999]¢
The multiset for C* contains eight skew lines
(1000,1001), (1011,1100), (1012,1114), (1013,1120),
(1014,1130), (1015,1140), (1016,1150), (1017,1161).
Hence, we get
1125 — 10¢,4,999 — 9t]g codes for 1 <t < 8

DYy geometric puncturing.




Lemma 7. There exist
[1186—10t,4,1053—9t]g fort =0,1,2,3,4,5
and [1277,4,1134]g9 codes.

Proof.

C: [39,4,30]g code with generator matrix
G = [1000%] 4+ 17214 + 1846% 4+ 14734 + 1300% +
18514 4+ 15744 4+ 12814 4 1405% + 12562 4+ 15151,



where the columns of G consist of
nine orbits of length 4,
one orbit of length 2 and one fixed point

under the projectivity defined by the compan-
ion matrix of z% — 1.

= C: 3-div [39,4,30]g9 code with spectrum
(ap, a3, ag,a9) = (32,427,327,34).



C: 3-div [39,4,30]q
J projective dual
C*. 27-div [1277,4,1134]q
The multiset for C* contains one plane
(1004,1018,1118)
and five skew lines
(1000, 1015), (1002,1103), (1003,1110), (1005,1120),
(1006, 1140).
Hence, we get
[1186 — 10¢,4,1053 — 9t]g codes for 0 <t <5
by geometric puncturing.




7. New results on ng(4,d)

We determined ng(4,d) for 115 values of d.
(1) no(4,d) = go(4,d) for d € {811-837,892-918,973-
999}

(2) ng(4,d) = go(4,d) + 1 for d € {964-972,1045-
1053,1114-1116,1122-1134}

(3) ng(4,d) < gg(4,d)+1 for d € {802-810,838-891,919-
963,1000-1044,1081-1113,1117-1121}

Still ng(4,d) is not determined for 824 values
of d.



Thank you for your attention!
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