New 4-dimensional linear codes over \mathbb{F}_{9}

Tsukasa Okazaki
(Joint work with Tatsuya Maruta)

Department of Mathematics and Information Sciences

Osaka Prefecture University

Contents

1. Optimal linear codes problem
2. Geometric method
3. Projective dual
4. Geometric puncturing
5. Quasi-cyclic codes
6. Construction of new codes
7. New results on $n_{9}(4, d)$

1. Optimal linear codes problem

\mathbb{F}_{q} : the field of q elements

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \cdots, a_{n}\right) \mid a_{i} \in \mathbb{F}_{q}\right\}
$$

The weight of $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is

$$
w t(a)=\left|\left\{i \mid a_{i} \neq 0\right\}\right|
$$

An $[n, k, d]_{q}$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum weight d,

$$
d=\min \{w t(\boldsymbol{a}) \mid a \in \mathcal{C}, a \neq 0\} .
$$

A vector $a \in \mathcal{C}$ is called a codeword.

For an $[n, k, d]_{q}$ code \mathcal{C}, a $k \times n$ matrix G whose rows form a basis of \mathcal{C} is a generator matrix.

The weight distribution (w.d.) of \mathcal{C} is the list of numbers $A_{i}>0$, where

$$
A_{i}=|\{c \in \mathcal{C} \mid w t(c)=i\}|>0
$$

The weight distribution

$$
\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)
$$

is also expressed as

$$
0^{1} d^{\alpha} \ldots
$$

A good $[n, k, d]_{q}$ code will have small n for fast transmission of messages, large k to enable transmission of a wide variety of messages, and
large d to correct many errors.

The problem to optimize one of the parameters n, k, d for given the other two is called "optimal linear codes problem" (Hill 1992).

Problem 1. Find $n_{q}(k, d)$, the smallest value of n for which an $[n, k, d]_{q}$ code exists.

Problem 2. Find $d_{q}(n, k)$, the largest value of d for which an $[n, k, d]_{q}$ code exists.

An $[n, k, d]_{q}$ code is called optimal if

$$
n=n_{q}(k, d) \text { or } d=d_{q}(n, k)
$$

We deal with Problem 1 for $q=9, k=4$.

The Griesmer bound

$$
n \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ is a smallest integer $\geq x$.

An $[n, k, d]_{q}$ code attaining the Griesmer bound is called a Griesmer code.

Griesmer codes are optimal.

Known results for $q=9, k=4$

The exact values of $n_{9}(4, d)$ are determined for all d for $d \geq 1216$.
For $1 \leq d \leq 1215, n_{9}(4, d)$ is detemined for 276 values of d but not for 939 values of d.

2. The geometric method

$\mathrm{PG}(r, q)$: projective space of dim. r over \mathbb{F}_{q}
j-flat: j-dim. projective subspace of $\mathrm{PG}(r, q)$
0 -flat: point 1-flat: line
2-flat: plane ($r-1$)-flat: hyperplane

$$
\theta_{j}:=\left(q^{j+1}-1\right) /(q-1)=q^{j}+q^{j-1}+\cdots+q+1
$$

\mathcal{C} : an $[n, k, d]_{q}$ code generated by G.
Since we would like to find $n_{q}(k, d)$, we assume that G contains no all-zero-columns.
Then the columns of G can be considered as a multiset of n points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted also by \mathcal{C}.
$\mathcal{F}_{j}:=$ the set of j-flats of Σ
i-point: a point of Σ with multiplicity i in \mathcal{C}. γ_{0} : the maximum multiplicity of a point from Σ in \mathcal{C}
C_{i} : the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$.
$\lambda_{i}:=\left|C_{i}\right|, 0 \leq i \leq \gamma_{0}$.

For ${ }^{\forall} S \subset \Sigma$, the multiplicity of S w.r.t. \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, is defined by

$$
m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right| .
$$

Then we obtain the partition

$$
\begin{aligned}
& \Sigma=C_{0} \cup C_{1} \cup \cdots \cup C_{\gamma_{0}} \text { such that } \\
& n=m_{\mathcal{C}}(\Sigma) \\
& n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\} .
\end{aligned}
$$

Conversely such a partition of Σ as above gives an $[n, k, d]_{q}$ code in the natural manner.
i-hyperplane: a hyperplane π with $i=m_{\mathcal{C}}(\pi)$. $a_{i}:=\left|\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi)=i\right\}\right|$.

The list of a_{i} 's is the spectrum of \mathcal{C}.

$$
a_{i}=A_{n-i} /(q-1) \text { for } 0 \leq i \leq n-d .
$$

3. Projective dual

An $[n, k, d]_{q}$ code is m-divisible (or m-div) if $\exists m>1 \quad$ s.t. $\quad A_{i}>0 \Rightarrow m \mid i$.

Ex. 1. There exists a 3-div [41, 4, 33] 9 code with w.d. $0^{1} 33^{984} 36^{3608} 39^{1968}$.

The spectrum is $\left(a_{2}, a_{5}, a_{8}\right)=(246,451,123)$.

Lemma 1. (Projective dual)
$\mathcal{C}: m$-div $[n, k, d]_{q}$ code, $q=p^{h}, p$ prime. $m=p^{r}$ for some $1 \leq r<h(k-2), \lambda_{0}>0$.
$\Rightarrow \exists \mathcal{C}^{*}: t$-div $\left[n^{*}, k, d^{*}\right]_{q}$ code with

$$
\begin{aligned}
& t=q^{k-2} / m \\
& n^{*}=n t q-\frac{d}{m} \theta_{k-1}, \\
& d^{*}=((n-d) q-n) t .
\end{aligned}
$$

A generator matrix for \mathcal{C}^{*} is given by considering ($n-d-j m$)-hyperplanes as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1$.

Ex. 2.
$\mathcal{C}: 3-d i v[41,4,33]_{9}$
with spec. $\left(a_{2}, a_{5}, a_{8}\right)=(246,451,123)$
\downarrow projective dual
$\mathcal{C}^{*}: \quad 27-\operatorname{div}[943,4,837]_{9} \quad\left(n^{*}=2 a_{2}+a_{5}\right)$
with spec. $\left(a_{79}^{*}, a_{106}^{*}\right)=(41,779)$

4. Geometric puncturing

The puncturing from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\Sigma=\mathrm{PG}(k-1, q)$ is geometric puncturing.

Lemma 2. $\mathcal{C}:[n, k, d]_{q}$ code $\cup_{i=0}^{\gamma_{0}} C_{i}$: the partition of Σ obtained from \mathcal{C}. If $\cup_{i \geq 1} C_{i}$ contains a t-flat Π and if $d>q^{t}$ $\Rightarrow \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code, for $d^{\prime} \geq d-q^{t}$.

5. Quasi-cyclic codes

$R=\mathbb{F}_{q}[x] /\left(x^{N}-1\right)$: ring of polynomials over \mathbb{F}_{q} modulo $x^{N}-1$.
We associate $\left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{F}_{q}^{N}$
with $a_{0}+a_{1} x+\cdots+a_{N-1} x^{N-1} \in R$.

For $\mathrm{g}=\left(g_{1}(x), \cdots, g_{m}(x)\right) \in R^{m}$, an ideal $C \mathrm{~g}$ of R^{m} defined by

$$
C_{\mathrm{g}}=\left\{\left(r(x) g_{1}(x), \cdots, r(x) g_{m}(x)\right) \mid r(x) \in R\right\}
$$

is called the 1-generator quasi-cyclic (QC)
code with generator g.

When $m=1, \mathcal{C}=C_{\mathrm{g}}$ is called cyclic satisfying that $c(x) \in \mathcal{C}$ implies $x \cdot c(x) \in \mathcal{C}$,
i.e., $\quad\left(c_{0}, c_{1}, \ldots, c_{N-1}\right) \in \mathcal{C}$
$\Rightarrow \quad\left(c_{N-1}, c_{0}, c_{1}, \ldots, c_{N-2}\right) \in \mathcal{C}$.

Let $g(x)=x^{k}-\sum_{i=0}^{k-1} g_{i} x^{i} \in \mathbb{F}_{q}[x]$ dividing $x^{N}-1$. We denote by $\left[g^{N}\right]$ or by $\left[g_{0} g_{1} \cdots g_{\hat{k}-1}^{N}\right.$] the $k \times N$ matrix

$$
\left[P, T P, T^{2} P, \ldots, T^{N-1} P\right]
$$

where

$$
T=\left[\begin{array}{ccccc|c}
0 & 0 & \ldots & \ldots & 0 & g_{0} \\
\hline 1 & 0 & \ldots & \ldots & 0 & g_{1} \\
0 & 1 & 0 & \ldots & 0 & g_{2} \\
0 & 0 & \cdots & 0 & \vdots & \vdots \\
0 & \ldots & 0 & \cdots & 0 & g_{k-2} \\
0 & \ldots & \ldots & 0 & 1 & g_{k-1}
\end{array}\right], P=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

i.e., T is the companion matrix of $g(x)$.

$$
\tau: \mathrm{PG}(k-1, q) \longrightarrow \mathrm{PG}(k-1, q)
$$

defined by

$$
\tau\left(\mathrm{P}\left(x_{0}, \cdots, x_{k-1}\right)\right)=\mathrm{P}\left(T\left(x_{0}, \cdots, x_{k-1}\right)^{\top}\right)
$$

Then the columns of [g^{N}] can be considered as an orbit of τ.

Now, take m orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \cdots, \mathcal{O}_{m}$ of τ with length N, and select a point P_{i} from each \mathcal{O}_{i}. We take $P_{1}, P_{2}, \cdots, P_{m}$ as non-zero column vectors in \mathbb{F}_{q}^{k}.

We always take P_{1} as $P=(1,0,0, \cdots, 0)^{\top}$. We denote the matrix

$$
\begin{aligned}
& {\left[P_{1}, T P_{1}, T^{2} P_{1}, \ldots, T^{n_{1}-1} P_{1} ; P_{2}, T P_{2}, \cdots\right.} \\
& \left.\cdots ; P_{m}, T P_{m}, T^{2} P_{m}, \ldots, T^{n_{m}-1} P_{m}\right]
\end{aligned}
$$

by $\left[g^{n_{1}}\right]+P_{2}^{n_{2}}+\cdots+P_{m}^{n_{m}}$.
Then, the matrix $\left[g^{N}\right]+P_{2}^{N}+\cdots+P_{m}^{N}$ defined from m orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \cdots, \mathcal{O}_{m}$ of τ generates a QC code.
$\mathbb{F}_{9}=\left\{0,1, \alpha, \cdots, \alpha^{7}\right\}$, with $\alpha^{2}=\alpha+1$.
we denote $\alpha, \alpha^{2}, \cdots, \alpha^{7}$ by $2,3, \cdots, 8$ so that $\mathbb{F}_{9}=\{0,1,2, \cdots, 8\}$.

addition table										multiplication table									
+	0	1	2	3	4	5	6	7	8	\times	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8	0	0	0	0	0	0	0	0	0	0
1	1	5	3	8	7	0	4	6	2	1	0	1	2	3	4	5	6	7	8
2	2	3	6	4	1	8	0	5	7	2	0	2	3	4	5	6	7	8	1
3	3	8	4	7	5	2	1	0	6	3	0	3	4	5	6	7	8	1	2
4	4	7	1	5	8	6	3	2	0	4	0	4	5	6	7	8	1	2	3
5	5	0	8	2	6	1	7	4	3	5	0	5	6	7	8	1	2	3	4
6	6	4	0	1	3	7	2	8	5	6	0	6	7	8	1	2	3	4	5
7	7	6	5	0	2	4	8	3	1	7	0	7	8	1	2	3		5	6
8	8	2	7	6	0	3	5	1	4	8	0	8	1	2	3	4	5	6	

Ex. 3.

$$
P_{1}=(1,0,0,0)^{\top}, P_{2}=(1,0,1,7)^{\top} \in \mathbb{F}_{9}^{4}
$$

$$
g(x)=x^{4}-5 x^{3}-5 x^{2}-5 x-5 \in \mathbb{F}_{9}[x]
$$

$$
\Rightarrow T=\left[\begin{array}{llll}
0 & 0 & 0 & 5 \\
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

$$
\begin{array}{ll}
P_{1}=(1,0,0,0)^{\top}, & T P_{1}=(0,1,0,0)^{\top}, \\
T^{2} P_{1}=(0,0,1,0)^{\top}, & T^{3} P_{1}=(0,0,0,1)^{\top}, \\
T^{4} P_{1}=(5,5,5,5)^{\top}, & T^{5} P_{1}=(1,0,0,0)^{\top}
\end{array}
$$

$$
\mathcal{O}_{1}=\left\{P_{1}, T P_{1}, T^{2} P_{1}, T^{3} P_{1}, T^{4} P_{1}\right\}
$$

$$
\Rightarrow \quad\left[\begin{array}{llll}
1 & 2 & 3 & 4^{5}
\end{array}\right]=\left[\begin{array}{lll|l|ll}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & 5 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 5
\end{array}\right]
$$

$$
\Rightarrow[5,4,2]_{9} \text { code }
$$

$$
\begin{aligned}
& P_{2}=(1,0,1,7)^{\top}, \quad T P_{2}=(3,8,3,8)^{\top}, \\
& T^{2} P_{2}=(4,5,0,5)^{\top}, \quad T^{3} P_{2}=(1,7,0,1)^{\top}, \\
& T^{4} P_{2}=(5,0,4,5)^{\top}, \quad T^{5} P_{2}=(1,0,1,7)^{\top} \\
& \mathcal{O}_{2}=\left\{P_{2}, T P_{2}, T^{2} P_{2}, T^{3} P_{2}, T^{4} P_{2}\right\} \\
& \Rightarrow \quad 1017^{5}=\left[\begin{array}{lllll}
1 & 3 & 4 & 1 & 5 \\
0 & 8 & 5 & 7 & 0 \\
1 & 3 & 0 & 0 & 4 \\
7 & 8 & 5 & 1 & 5
\end{array}\right] \\
& \Rightarrow[5,4,2]_{9} \text { code }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4^{5}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & 5 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & 5
\end{array}\right], 1017^{5}=\left[\begin{array}{lllll}
1 & 3 & 4 & 1 & 5 \\
0 & 8 & 5 & 7 & 0 \\
1 & 3 & 0 & 0 & 4 \\
7 & 8 & 5 & 1 & 5
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{llll}
1 & 2 & 3 & 4^{5}
\end{array}\right]+1017^{5}=\left[\begin{array}{lllll|lllll}
1 & 0 & 0 & 0 & 1 & 1 & 3 & 4 & 1 & 5 \\
0 & 1 & 0 & 0 & 2 & 0 & 8 & 5 & 7 & 0 \\
0 & 0 & 1 & 0 & 3 & 1 & 3 & 0 & 0 & 4 \\
0 & 0 & 0 & 1 & 4 & 7 & 8 & 5 & 1 & 5
\end{array}\right]
$$

\Rightarrow QC $[10,4,5]_{9}$ code

6. Construction of new codes

Lemma 3. There exists [1227, 4, 1089] ${ }_{9}$, [1237, 4, 1098] ${ }_{9},[1247,4,1107]_{9}$ codes.

Proof.
\mathcal{C} : QC code with generator matrix
$\left[5214^{7}\right]+1402^{7}+1371^{7}+1706^{7}+1243^{7}+1377^{7}$ $+1718^{7}$.
Then \mathcal{C} is a 3-div $[49,4,39]_{9}$ code with spectrum $\left(a_{1}, a_{4}, a_{7}, a_{10}\right)=(28,448,267,77)$.

As projective dual, we get a $[1247,4,1107]_{9}$ code \mathcal{C}^{*} with w.d. $0^{1} 1107^{6168} 11344^{392}$.

The multiset for \mathcal{C}^{*} has two skew lines

$$
l_{1}=\langle 1000,1111\rangle, l_{2}=\langle 1002,1121\rangle .
$$

Hence, we get
[1227, 4, 1089] ${ }_{9},[1237,4,1098]_{9}$ codes by geometric puncturing.

Lemma 4. There exist
$[913,4,810]_{9},[923,4,819]_{9},[933,4,828]_{9}$ and $[943,4,837]_{9}$ codes.

Proof.

\mathcal{C} : extended QC code with generator matrix $\left[1000^{4}\right]+7211^{4}+1116^{4}+1574^{4}+1376^{4}+1507^{4}$ $+1247^{4}+1426^{4}+1237^{4}+1860^{4}+1515^{1}$.
$\Rightarrow \mathcal{C}: 3$-div $[41,4,33]_{9}$ code with spectrum

$$
\left(a_{2}, a_{5}, a_{8}\right)=(246,451,123)
$$

$\mathcal{C}: \quad 3-\operatorname{div}[41,4,33]_{9}$
\downarrow projective dual
$\mathcal{C}^{*}: 27-$ div $[943,4,837]_{9}$
The multiset for \mathcal{C}^{*} contains three skew lines
$l_{1}=\langle 1000,1018\rangle, l_{2}=\langle 1002,1102\rangle, l_{3}=\langle 1003,1114\rangle$.
Hence, we get
$[913,4,810]_{9},[923,4,819]_{9}$ and $[933,4,828]_{9}$ codes by geometric puncturing.

There are 200 orbits of length 4, 8 orbits of length 2 and 4 fixed points under the projectivity defined by the companion matrix of $x^{4}-1$.

We give three other 3-divisible codes constructed from these orbits.

Lemma 5. There exist

$$
[1034-10 t, 4,918-9 t]_{9} \text { codes }
$$

$$
\text { for } t=0,1,2,3,4,5,6,7,8
$$

Proof.

\mathcal{C} : $[38,4,30]_{9}$ code with generator matrix $G=\left[1000^{4}\right]+1721^{4}+1215^{4}+1056^{4}+1574^{4}$ $+1542^{4}+1761^{4}+1065^{4}+1168^{4}+1515^{1}+1357^{1}$,
where the columns of G consist of nine orbits of length 4 and two fixed points under the projectivity defined by the companion matrix of $x^{4}-1$.
$\Rightarrow \mathcal{C}: 3$-div $[38,4,30]_{9}$ code with spectrum $\left(a_{2}, a_{5}, a_{8}\right)=(298,438,84)$.
$\mathcal{C}: \quad 3-\operatorname{div}[38,4,30]_{9}$
\downarrow projective dual
$\mathcal{C}^{*}: 27-$ div $[1034,4,918]_{9}$
The multiset for \mathcal{C}^{*} contains eight skew lines $\langle 1000,1103\rangle,\langle 1002,1111\rangle,\langle 1003,1017\rangle,\langle 1005,1121\rangle$ ，〈1006，1132〉，〈1007，1140〉，〈1008，1150〉，〈1010，1105〉． Hence，we get
［1034－10t，4， $918-9 t]_{9}$ codes for $1 \leq t \leq 8$ by geometric puncturing．

Lemma 6. There exist

$$
[1125-10 t, 4,999-9 t]_{9} \text { codes }
$$

$$
\text { for } t=0,1,2,3,4,5,6,7,8
$$

Proof.

\mathcal{C} : $[35,4,27]_{9}$ code with generator matrix

$$
\begin{aligned}
& G=1018^{4}+1077^{4}+1220^{4}+1550^{4}+1034^{4}+1566^{4} \\
& +1356^{4}+1313^{2}+1652^{2}+1357^{1}+1111^{1}+1753^{1},
\end{aligned}
$$

where the columns of G consist of
seven orbits of length 4,
two orbits of length 2 and three fixed points under the projectivity defined by the companion matrix of $x^{4}-1$.
$\Rightarrow \mathcal{C}: 3$-div $[35,4,27]_{9}$ code with spectrum

$$
\left(a_{2}, a_{5}, a_{8}\right)=(360,405,55)
$$

$\mathcal{C}: \quad 3-\operatorname{div}[35,4,27]_{9}$
\downarrow projective dual
$\mathcal{C}^{*}: 27-$ div $[1125,4,999]_{9}$
The multiset for \mathcal{C}^{*} contains eight skew lines $\langle 1000,1001\rangle,\langle 1011,1100\rangle,\langle 1012,1114\rangle,\langle 1013,1120\rangle$, $\langle 1014,1130\rangle,\langle 1015,1140\rangle,\langle 1016,1150\rangle,\langle 1017,1161\rangle$. Hence, we get
[1125-10t, 4, $999-9 t]_{9}$ codes for $1 \leq t \leq 8$ by geometric puncturing.

Lemma 7. There exist

[1186-10t, 4, 1053-9t] ${ }_{9}$ for $t=0,1,2,3,4,5$ and $[1277,4,1134]_{9}$ codes.

Proof.

\mathcal{C} : $[39,4,30]_{9}$ code with generator matrix

$$
\begin{aligned}
& G=\left[1000^{4}\right]+1721^{4}+1846^{4}+1473^{4}+1300^{4}+ \\
& 1851^{4}+1574^{4}+1281^{4}+1405^{4}+1256^{2}+1515^{1},
\end{aligned}
$$

where the columns of G consist of nine orbits of length 4, one orbit of length 2 and one fixed point under the projectivity defined by the companion matrix of $x^{4}-1$.
$\Rightarrow \mathcal{C}: 3$-div $[39,4,30]_{9}$ code with spectrum

$$
\left(a_{0}, a_{3}, a_{6}, a_{9}\right)=(32,427,327,34)
$$

$\mathcal{C}: \quad$ 3－div $[39,4,30]_{9}$
\downarrow projective dual
$\mathcal{C}^{*}: 27-$ div $[1277,4,1134]_{9}$
The multiset for \mathcal{C}^{*} contains one plane〈1004，1018，1118〉
and five skew lines
〈1000，1015〉，〈1002，1103〉，〈1003，1110〉，〈1005，1120〉，〈1006，1140〉．
Hence，we get
［1186－10t，4，1053－9t］ 9 codes for $0 \leq t \leq 5$ by geometric puncturing．

7. New results on $n_{9}(4, d)$

We determined $n_{9}(4, d)$ for 115 values of d.
(1) $n_{9}(4, d)=g_{9}(4, d)$ for $d \in\{811-837,892-918,973-$ 999\}
(2) $n_{9}(4, d)=g_{9}(4, d)+1$ for $d \in\{964-972,1045-$ 1053, 1114-1116, 1122-1134\}
(3) $n_{9}(4, d) \leq g_{9}(4, d)+1$ for $d \in\{802-810,838-891,919-$ 963, 1000-1044, 1081-1113, 1117-1121\}
Still $n_{9}(4, d)$ is not determined for 824 values of d.

Thank you for your attention!

References

A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11, 261-266, 1997.
R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford Univ. Press, Oxford, 1992, 75-104.
R. Hill, D.E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2, 137-157, 1992.
T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing 7, 73-80, 2013.
T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun. 5, 505-520, 2011.
T. Maruta, M. Shinohara, A. Kikui, On optimal linear codes over \mathbb{F}_{5}, Discrete Math. 309, 1255-1272, 2009.
T. Maruta, M. Shinohara, M. Takenaka, Constructing linear codes from some orbits of projectivities, Discrete Math. 308 832-841, 2008.

